The carbonate ion in hydroxyapatite: recent X-ray and infrared results.

نویسنده

  • Michael E Fleet
چکیده

The location and orientation of the carbonate ion in the channel (A) and phosphate (B) positions of hydroxyapatite (CHAP) have been investigated by single-crystal X-ray structure and Fourier transform infrared (FTIR) spectroscopy, using crystals synthesized at high pressure. The type A carbonate ion is oriented in the apatite channel with two oxygen atoms close to the c-axis and the B carbonate ion is located near a sloping face of the substituted phosphate tetrahedron. Close comparison of FTIR and X-ray structure results shows that a Na-bearing CHAP containing approximately equal amounts of A and B carbonate ions is a realistic model for the overall crystal structure of biological apatite. However, the absence of distinct OH stretch and OH libration bands indicates that the hydroxyl content of biological apatite is disordered in respect to its orientation and precise location both in the channel and elsewhere in the structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbonate Hydroxyapatite and Silicon-Substituted Carbonate Hydroxyapatite: Synthesis, Mechanical Properties, and Solubility Evaluations

The present study investigates the chemical composition, solubility, and physical and mechanical properties of carbonate hydroxyapatite (CO3Ap) and silicon-substituted carbonate hydroxyapatite (Si-CO3Ap) which have been prepared by a simple precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF) spectroscopy, and inductively couple...

متن کامل

Bioresorbability Evaluation of Hydroxyapatite Nanopowders in a Stimulated Body Fluid Medium

     The bone mineral consists of tiny hydroxyapatite (HA) crystals in the nanoregime. Nanostructured HA is also expected to have better bioactivity than coarser crystals. This paper reports on the in vitro evaluation of bone like HA nanopowders. The prepared HA nanopowder was characterized for its phase purity, chemical homogeneity and bioactivity. Fourier transform infrared (FT-IR) s...

متن کامل

Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates

A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising p...

متن کامل

Comparison of Purity and Properties of Hydroxyl Carbonate Apatite Extracted from Natural Thigh Bone by Different Physio-chemical Methods

New approaches to extracting natural hydroxyl carbonate apatite from bio waste of bovine bones cortical femur have been developed. To extract pure and natural bio ceramics, three different treatments have been applied: 1-Calcination heat treatment at temperature of 700 , 2-alkaline hydrothermal at temperature of 275 and 3-Pressurized low polarity water at temperature of 250 . Raw bovine bone an...

متن کامل

High Biological performance of Silicon Substituted Nano Hydroxyapatite Synthesized in Simulated Body Fluid at 37°C

In this work, we report high biological performance of silicon substituted nano hydroxyapatite (nHA) prepared by immersion of calcium phosphate and sodium silicate as precursors in Simulated Body Fluid (SBF) solution for 24, 36, 48 and 72 hrs at 37°C. Characterization and chemical analysis of the synthesized powders were performed by Fourier transform, infrared spectroscopy (FT-IR), X-ray powde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013